Программирование на JAVA

Навигация

Технология Hyper-Threading от Intel

Производительности всегда мало

0 1

Hyper-Threading

2 3

Углубляемся в технологию

4 5

Максимум эффективности от Hyper-Threading

6 7

Архитектура IA-64

8 9

Архитектура Е2К

10 11 12 13 14 15

Большие компьютерные системы

Виды параллельной обработки

16 17 18 19 20 21 22

Матричная обработка данных

23 24 25 26

Архитектура мультипроцессорных систем общего назначения

27 28 29

Коммуникационные сети

30 31 32 33 34 35 36 37 38 39 40 41 42 43

Организация памяти в мультипроцессорных системах

44 45 46

Программный параллелизм и общие переменные

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

Мультикомпьютерные системы

63 64 65

Общая память и передача сообщений

66 67 68 69 70 71 72 73 74

Производительность мультипроцессорных систем

75 76 77 78 79 80 81 82

Использование технологии параллельного программирования MPI-2

Введение

83 84 85

Кластерные системы и стандарт параллельного программирования MPI

86 87 88 89 90 91 92 93 94 95 96 97 98 99

Математические проблемы параллельных вычислений

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

Реклама :




Основная цель подобных изменений заключается в том, чтобы на самом раннем этапе обучения вычислительному делу вызвать интерес к информационным структурам алгоритмов и показать перспективность работы с ними. А перспективность действительно имеется.

Построение графов для большого числа конкретных алгоритмов выявило удивительную закономерность: большое разнообразие существующих методов не приводит к такому же разнообразию их информационных структур. Точнее, многие графы формально совершенно различных алгоритмов оказались изоморфными, отличаясь друг от друга только содержанием вершин и дуг. Поэтому была выдвинута гипотеза о том, что в конкретных вычислительных областях типовых информационных структур немного. Пока практика подтверждает эту гипотезу. Например, на всем множестве алгоритмов линейной алгебры типовых информационных структур оказалось всего лишь порядка десятка.

Специалистам по вычислительной и прикладной математике нужно сделать еще очень много, чтобы понять, как же в действительности устроены используемые ими алгоритмы. Если выдвинутая гипотеза окажется верной, то откроется много новых связей и направлений исследований. Изложение численных методов может быть поставлено на общий информационный фундамент, распараллеливание типовых информационных структур может быть заранее изучено и реализовано с помощью специальных программных средств, по типовым структурам могут быть построены спецпроцессоры, реализующие быстрое решение нужных алгоритмов. Отсюда уже недалеко и до построения заказных вычислительных систем, ориентированных на эффективное решение классов задач из конкретных прикладных областей. В любом случае за выдвинутой гипотезой тянется много интересных следствий. Насколько гипотеза верна в реальности, – покажет будущее. Но что-то интересное в ней всё-таки есть.

Возможно, следует более критически осмыслить научный фундамент параллельных вычислений. Мы уже отмечали значение машины Тьюринга для теории и практики последовательных вычислений. Этот формальный автомат позволяет реализовать любой последовательный алгоритм и в определённом смысле является прообразом любой однопроцессорной ЭВМ. Но любая многопроцессорная ЭВМ также может реализовать если не любой, то почти любой алгоритм. Тем не менее, в развитии таких ЭВМ и всего того, что их окружает, совсем не ощущается необходимость введения формального автомата, который позволял бы реализовать любой параллельный алгоритм. Однако появилась острая потребность в некоторой идеализированной машине, на которой можно было бы реализовать для конкретного алгоритма любой режим, как параллельный, так и последовательный. С подобными задачами вполне справилась граф-машина, построенная на основе графа алгоритма.

Вообще говоря, не очень понятно, почему не появляется необходимость введения идеализированной параллельной машины, на которой можно было бы реализовывать любые алгоритмы в любом режиме. Может быть просто потому, что развитие параллельной вычислительной техники до сих пор осуществляется в значительной мере стихийно, и пока ещё не сформировались устойчивые принципы её конструирования?

Конечно, многое из сказанного ориентировано на перспективу. Однако использование различных знаний, касающихся информационной структуры алгоритмов, уже сейчас приносит свои плоды. Например, решена проблема построения математических моделей систолических массивов, представляющих специального вида вычислительные системы для сверхбыстрой реализации некоторых алгоритмов. Установлена связь графа алгоритма и таких задач как быстрое вычисление производной и градиента, быстрое восстановление линейного функционала, оценивание влияния ошибок округления. Хотя граф алгоритма и является важнейшим понятием, связанным с изучением параллельных свойств алгоритмов, тем не менее, ни этот граф, ни все перечисленные только что задачи не имеют к параллелизму никакого прямого отношения. Может быть, между различными алгоритмическими проблемами имеется куда больше связей, чем известно сегодня?

Складывается впечатление, что значение сведений об информационной структуре алгоритмов выходит далеко за рамки параллельных вычислений и, возможно, эти сведения являются стержнем многих исследований в области алгоритмов, реализуемых на вычислительной технике. Если это так, то первичные знания из данной области должны внедрятся в образование. И чем скорее и на более ранних этапах, тем лучше.


<< назад