Программирование на JAVA

Навигация

Технология Hyper-Threading от Intel

Производительности всегда мало

0 1

Hyper-Threading

2 3

Углубляемся в технологию

4 5

Максимум эффективности от Hyper-Threading

6 7

Архитектура IA-64

8 9

Архитектура Е2К

10 11 12 13 14 15

Большие компьютерные системы

Виды параллельной обработки

16 17 18 19 20 21 22

Матричная обработка данных

23 24 25 26

Архитектура мультипроцессорных систем общего назначения

27 28 29

Коммуникационные сети

30 31 32 33 34 35 36 37 38 39 40 41 42 43

Организация памяти в мультипроцессорных системах

44 45 46

Программный параллелизм и общие переменные

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

Мультикомпьютерные системы

63 64 65

Общая память и передача сообщений

66 67 68 69 70 71 72 73 74

Производительность мультипроцессорных систем

75 76 77 78 79 80 81 82

Использование технологии параллельного программирования MPI-2

Введение

83 84 85

Кластерные системы и стандарт параллельного программирования MPI

86 87 88 89 90 91 92 93 94 95 96 97 98 99

Математические проблемы параллельных вычислений

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

Реклама :




большого числа слагаемых является очень распространённой, был придуман другой способ суммирования, обладающий лучшим параллелизмом. Разобьём все слагаемые на пары и осуществим суммирование двух чисел внутри каждой пары. Все эти операции независимы. Полученные частные суммы также разобьём на пары и снова осуществим суммирование двух чисел внутри каждой пары. Снова все операции независимы. Вся сумма будет получена через log2n шагов. Это и будет высота нового алгоритма. В нём уже имеется значительный ресурс параллелизма, хотя он не равномерен. На первом временном шаге может быть использовано n/2 процессоров, на втором n/4 и т.д. Назван новый алгоритм процессом сдваивания.

Заметим, что оба алгоритма основаны на реализации математически эквивалентных выражений суммирования чисел, но они имеют разные свойства, по крайней мере, с точки зрения параллельных вычислений. На самом деле, у них много и других различий: они по-разному реагируют на ошибки округления, по-разному используют память и т.п. Поэтому эти алгоритмы следует считать принципиально различными, несмотря на то, что они математически эквивалентны!

Пусть какой-то алгоритм существенно зависит от n входных данных и реализуется через некоторую совокупность операций, имеющих не более p аргументов


<< назад вперед >>